Büchi automata
Büchi automata are often used in 模型检测 as an automata-theoretic representation of a linear temporal logic (LTL) formula (see LTL translation to Büchi automata).
Definition
Generalized Büchi Automata is a generalized version of Büchi automata:
Language
Nondeterministic Büchi automata recognize ω-regular language, but deterministic Büchi automata is weaker.
An ω-language is recognizable by a deterministic Büchi automata if it is the limit language of some regular language. See Büchi automaton - Wikipedia for proof.
Closure Properties
The set of Büchi automata is closed under union, concatenation, intersection and complement.
-
union is trivial
-
intersection: 和FA不同,简单地构造product automaton是不对的。在传统的构造中,终止状态是 ,隐含了一个条件,即输入串在 和 中的run同时终止在接受状态。这在字符串有限时是没有问题的,但是对于一个infinite word,它在两个Buchi自动机中的run可能是在不同位置经过接受状态的,因此不能简单算积。
上面的构造方法相当于是有两份product automaton的copy。
-
concatenation: 将FA C和Büchi自动机 A按照一般方法拼接
- 转移
- 初始状态:如果C不接受空串,,否则
-
complement: NBA求补很困难. 这里 是DBA的求补算法,复杂度 . 但是正如DFA的求补算法不能用于NFA一样,上述方法不适用NBA
we can construct a Büchi automata A for a FA C such that .